
fundamental notion that molecular structure, or connectedness, 
plays an important role in physicochemical and, hence, biological 
properties. The relation of the connectivity index to other consti- 
tutive, additive properties is being pursued. 
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Abstract 0 The evaluation of models for single-particle dissolu- 
tion, based on multiparticulate dissolution data, is complicated by 
the distribution effect present when the particles are not truly 
monodispersed. By using simulated data, it is shown that remark- 
ably good linearity can be obtained with log-normal powders using 
an incorrect model. I t  is suggested that particle-size analysis is 
necessary to enable calculation of the distribution effect and to  
prevent this type of misinterpretation. The change in particle-size 
distribution during dissolution is calculated and shows potential 
for distinguishing between two, but not all three, of the models in- 
vestigated. Four theoretical rules for multiparticulate dissolution 
are stated and discussed. The concept of “time scaling” is present- 
ed. By using this procedure, it should be possible to reduce consid- 
erably computational errors arising from nonlinear dissolution 
data. I t  is demonstrated that dissolution profiles can be trans- 
formed to a standard form, enabling the distribution effect to be 
evaluated without interference from rate or particle-size parame- 
ters. 
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do not yield completely uniform particles. This situa- 
tion is particularly true for fine powders which are of 
greatest pharmaceutical importance. 

In recent years, there has been increasing interest 
in evaluating the distribution effect in multiparticu- 
late dissolution (6-9). A previous paper (9) discussed 
the theory and mathematics of multiparticulate sys- 
tems in relation to single-particle dissolution and the 
initial size distribution. The present paper evaluates 
distribution effects for log-normal powder systems; 
three single-particle dissolution models from the lit- 
erature are considered. By using simulated dissolu- 
tion data and particle-size distributions, the possibil- 
ity of distinguishing between the models is investi- 
gated. 

Keyphrases Dissolution, multiparticulate-size distribution ef- 
fects, log-normal powders, three single-particle models investi- 
gated Powders, dissolution-size distribution effects, log-normal 
distribution profile, three single-particle models investigated 0 
Particle dissolution-size distribution effects, log-normal powders, 
three single-particle models investigated and: 

Let: 

THEORY 

U’ = gh,  l , , f )  (Eq. I )  

The dissolution profile of a powder is determined 
by its particle-size distribution and the way the sin- 
gle particles dissolve. Several mathematical models 
have been presented to describe single-particle disso- 
lution (1-4), but none of these has yet received com- 
plete acceptance. Experimental evaluation of the 
models on the basis of multiparticulate dissolution 
data is complicated by the distribution effect present 
when the powder is not truly monodispersed. Such 
powders are impossible to obtain in most cases (5). 
Processes such as sieving, precipitation, and grinding 

l i ’ ( ,  = g-’(ut.t) (Eq. 2)  

describe the dissolution equation and inverse dissolution equation, 
respectively, for a single particle, where w and wo are the particle 
weights a t  time t and 0, respectively. Further, let lo(ao) denote the 
initial ( t  = 0) particle-size density (“probability”) distribution. By 
assuming that particles are spherical and remain so during dissolu- 
tion, the particle weight, w ,  is related to  the diameter, a, at any 
time by w = p?ra3/6, where p is the particle density. 

By using a technique similar to the one used in a previous paper 
(9), the following equation can be derived which rigorously de- 
scribes the particle-size distribution, l ( a ) ,  a t  any time if the initial 
distribution, lo(ao), is known together with the particle dissolution 
function, g: 
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(Eq. 3 )  

for: 

and l ( a )  = 0 elsewhere. 
The integration limits L1 and Lp depend on time as follows: 

Li = 4 

1,: = n,, for t such that Pg( F D : , t )  > 0 (&. 4c) 

where do and DO denote the initial diameters of the smallest and 
largest particles, respectively. The operator P has been introduced 
to make the expression generally applicable (9). It is defined to be 
equal to one in the time period before the operand becomes zero 
and is equal to zero beyond that time. The lower integration limit, 
L1, changes value a t  g[(pr/6)do3,t]  = 0, that is the critical time, 
when the particles start to disappear. The time at which g [ ( p r /  
6)Do3,t] = 0 corresponds to the disappearance of the last particle 
and marks the completion of the dissolution process. 

Many powders have size distributions that are approximately 
log-normal (5). Consider such a powder distributed such that In ao 
approximates a normal distribution with mean p and standard de- 
viation u truncated a t  In do = - io and In DO = p + Ju, where i 
and J are truncation parameters. The initial particle-size distribu- 
tion, lo(ao), is then given by (9): 

and l ( a )  = 0 elsewhere. Also: 
m 

TI = p - iu for - 3 In ( K t )  < p - iu (F4.10~) 

rn m 
3 3 TI = - I n ( K t )  for - In ( K t )  2 p - iu (Fq.1oh) 

, f n  m fl = - l n ( K t )  for T In ( K t )  2 p + j n  (Eq.1od) 3 3 
and: 

I 

(Eq. U )  

Equation 9 describes the size distribution for all three models. 
For Model 1, m = 3/2; for Model 2, m = 2; and for Model 3, rn = 3. 
The constants k and K for each model should be kl, kz, and k3 and 
KI, K2, and K3, respectively. The function F( ), the commonly tab- 
ulated area under the standard normal curve function, is defined 
as: 

K = ( 6 / p ~ ) " k  

(Eq. 12) 

The mean particle size (diameter), d,  can be obtained by apply- 
ing the usual integration approach used in mathematical expecta- 
tion: 

The integration interval R in Eq. 13 is the same as the interval for 
a defined in Eq. 9. Equation 13 considers Models 1 and 2 ( m  = 3/2 
and m = 2, respectively). The mean particle size for the third 
model ( m  = 3) simplifies further to: 

where N (  ) is the normal distribution with In ao as the variable. 
The change in the particle-size distribution during dissolution 

depends on the way the individual particles dissolve. Three widely 
known models for single-particle dissolution are considered. When 
written in the same form as Eq. 1, the Hixson-Crowell "cube root 
law" (3) can be expressed as: 

U' = ( L ( , , ) l "  - h ,t)' (Eq. 6 )  
In a similar way, the equation presented by Niebergall et al. (2) 
can be written simply: 

u = ( w O I / L  - kit )i (Eq. 7) 

and the model proposed by Higuchi and Hiestand (1) can be writ- 
ten: 

w = (w,,'jJ - k,t) ' / '  (Eq. 8) 

For simplicity and because their evaluation is not important to 
the theoretical discussion, the constants kl, kz, and k~ are used in 
place of the original time coefficients which included parameters 
such as the shape factor, particle density, and diffusion coefficient. 
In the following discussion, Eqs. 8, 7, and 6 will be referred to as 
Models 1, 2, and 3, respectively. 

By having defined the initial size distribution, lo(a0) (Eq. 5), and 
the dissolution function (Eqs. 68), the size distribution a t  time t ,  
l (a ) ,  can be expressed applying Eq. 3: 

for: 

where 2'1 and Tp are still defined as in Eqs. 10a-10d. The exact 
dissolution profile of a log-normal powder with single particles dis- 
solving according to each of the three models can be derived using 
Eq. 13 presented in the previous paper (9): 

F ( j  - &J) - F(-i - 3 ~ )  X 

where Wt and Wo are the amounts of undissolved powder a t  time t 
and 0, respectively. Equation 15 with m = 3, although presented in 
more compact form, is identical to Eq. 18 in the previous paper (9). 
Equation 15 is not defined for Model 1 (m = 3/2), which must be 
considered separately: 

JR:(w2 - K,t)'/2ww1N(ln w,p,u) d w  
(Eq. 16) _ -  W - e-.l#-90 1 

W,,  F ( j  - .7a) - F(-i - 30) 
where: 

R, = qu-10 for (K, t ) I /?  < ep-'" (Eq. 1 7 ~ )  

R, = ( K , t ) I / ?  for (Kit)"' 2 ep-'" (Eq. 17h) 

R ,  = ~ P + J "  for (K,t)"' < e'+'" (Eq. 17c) 

R1 = (Kl t ) l / 2  for (Kit ) , '?  L ep+'" (Eq. 17d) 

The derivations of these equations are based on two assump- 
tions: ( a )  that  the particles in the multiparticulate system dissolve 
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Figure 1-Two dissolution curves having the  same intrinsic dis- 
solution profile. Curve 1 can be brought into curve 2 by a t ime- 
scaling factor, t&l. Rule 2 states that k(1) = (tZ/tl)k(z), where k ( i )  
and k(2) are the rate parameters in the  single-particle dissolution 
equation for Systems I and 2 having the  same particle-size distri- 
bution. These statements also include plots where W/Wo is  raised 
to any  other exponent. 

independently of each other, which will be approximated well 
under sink conditions; and ( b )  that  they dissolve according to the 
same single-particle dissolution model having fixed parameters 
(for these cases, kl, k z ,  and k3 are the same for all particles and do 
not vary during the dissolution). If these conditions exist, then it is 
possible to make some general rules concerning the dissolution 
process. These rules are explained in relation to what will be 
termed “the intrinsic dissolution profile,” which can be defined in 
the following way. Dissolution curves have the same intrinsic dis- 
solution profile if, by a suitable scaling of time, they can be 
brought into each other in a W/Wo versus time plot (Fig. 1). 

I t  should be clear from observation of Eqs. 12 and 13 in the pre- 
vious paper (9) that  the coefficient of time in an expression cor- 
rectly defining the multiparticulate dissolution profile originates 
directly from the coefficient of time in the single-particle dissolu- 
tion equation. Thus, a different value of the rate parameter, that  
is, a different coefficient of time in the single-particle dissolution 
equation, has the same effect as a different scaling of time. There- 
fore, the intrinsic dissolution profile will still be the same. The fol- 
lowing rule can thus be stated: 

1. The  intrinsic dissolution profile is independent of the value 
of the  rate parameter, that is, the coefficient of t ime in the  single- 
particle dissolution equation. 

According to this rule, the rate parameters k l ,  kz, and k 2  (Eqs. 
6 8 )  have no influence on the intrinsic dissolution profile. Further- 
more, there will always be a proportional relationship between the 
coefficient of time in the multiparticulate dissolution equation and 
the rate parameter (note, for example, that  K in Eqs. 15 and 16 is 
related to k by K = ( 6 / p ~ ) ” ~ k  as seen in Eq. 111. The following 
rule can therefore be stated: 

2. I n  two systems having identical particle-size distributions, 
the  time-scaling factor that brings one dissolution curve into an-  
other is equal to the factor with which the  rate parameters are 
proportionally related in the two systems (Fig. 1). 

Consider two particle-size distributions that on a logarithmic 
scale are distributed ll(log a )  and ldlog a ) ,  having the same shape. 
Then, for any diameter, a (Fig. 2) ll(log a )  = lz(log a + log K,,); 

LOG (PARTICLE SIZE) 

Figure %-Two particle-size distributions having the same shape 
on a logarithmic scale. According to Rule 3, these distributions re- 
sult i n  dissolution curves with the same intrinsic dissolution pro- 
file (for example, curves I and 2 of Fig. 1 ). 

0 1 
TIME FRACTION. $ 

Figure 3-Normalized dissolution profiles of powders initially 
log-normal (u = 0.2, i = j = 2) ,  calculated (Eqs. 16 and 19) to dis- 
solve and plotted according to Models I ,  2, and 3: Model I ,  m = 
3/2; Model 2, m = 2; and Model 3, m = 3. T h e  stippled line repre- 
sents monodispersed powders (u = 0). 

i.e., ll(log a )  = lp(log K,a), where log K ,  is a measure of the dis- 
tance between the logarithmic distributions. Therefore, if the par- 
ticles in System 2 are scaled (measured) in units of K, ,  the result- 
ing distribution is the same as that  for System 1. Such a scaling of 
the particle sizes has an effect on the calculated dissolution profile. 

However, if the coefficient of time in the single-part,icle dissolu- 
tion equation is dimensionally dependent on length, as in a model 
that  is not first order, then a scaling in length, as in the above 
transformation of the particle-size distribution, has the same ef- 
fect as a scaling in time. If the single-particle dissolution is a first- 
order process, then the dissolution profile is completely indepen- 
dent of the particle-size distribution, because the fraction of each 
particle that  dissolves in a given time is the same, independent of 
its size. Therefore, it can be concluded that Systems 1 and 2 have 
the same intrinsic dissolution profile, and the following rule can be 
given: 

3. Two powders dissolving according t o  the  same single-parti- 
cle dissolution model have the same intrinsic dissolution profile i f  
their particle-size distributions are of the same shape on a loga- 
rithmic scale (Fig. 2) .  

It follows from this rule that i t  is not the “position” of the distri- 
bution, that is, not the actual size of the particles, but the shape of 
the distribution that affects the intrinsic dissolution profile. Thus 
it can be stated that: 

4. T h e  intrinsic dissolution profile does not depend on the ac- 
tual sizes of the particles but on the  shape of their distribution. 

RESULTS AND DISCUSSION 

According to Rule 2, the concept of time scaling in dissolution 
studies should have some practical application. It already has been 
stated that it is impossible to prepare completely monodispersed 
powders; therefore, some nonlinearity always is present in the dis- 
solution profile due to the distribution effect (9). This nonlinearity 

0 1 
TIME FRACTION, + 

Figure 4-Normalized dissolution profiles of powders initially 
log-normal (a = 0.14, i = j = 2). calculated (Eq. 16) to dissolve 
and plotted according to  Model I (curve a ) .  Curve b is the  same 
data plotted according to  Model 3, resulting in  almost complete 
cancellation of the size distribution effect observed in  curve a. 
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Figure 5-Normalized dissolution profiles of powders initially 
log-normal (u = 0.12, i = j = 2), calculated (Eq.  19, m = 2) to dis- 
solve and plotted according to Model 2 (curue a) .  Curue b is the 
same data plotted according to Model 3, resulting in  almost com- 
plete cancellation of the size distribution effect obserued in curue 
a. 

introduces errors into determination of the influence of factors 
such as the stirring rate, temperature, and vehicle composition on 
the rate parameter ( k l ,  k p ,  or k3)  using conventional “initial slope” 
or “line of best fit” computational techniques. 

However, Rule 2 provides an alternative approach where this 
type of error is negligible. The new technique simply involves find- 
ing a time-scaling factor that  brings one curve into the other or, 
more correctly, minimizes the separation of the curves. This factor 
is then equal to the factor by which the two rate parameters are 
proportionally related. Possibly the best criterion is to minimize 
the squared horizontal differences between the curves. 

According to Rules 1 and 3, i t  should be possible to normalize 
the calculated dissolution profiles for log-normal powders by ap- 
propriate scaling of time to a form that does not depend on either 
the rate parameter ( k l ,  kp ,  or k3)  or the actual sizes of the parti- 
cles. One approach is to scale the time in the W/Wo uersus time 
plots as the time fraction, $, defined as the fraction of the time 
necessary for complete dissolution. The expression defining the re- 
sulting normalized dissolution profile can be obtained in the fol- 
lowing way, using Models 2 and 3 as examples. The time for com- 
plete dissolution, to, is given by (m/3 )  In (Kto) = p + j u  (Eqs. 9 
and 15); then since $ = t/to, it follows t h a t  

I 

t (Eq. 18) 
Accordingly, the Kt  terms in Eq. 15 can be substituted by 

* = Ke-z‘U+Pl 

DIAMETER, pm 

Figure 6-Size distribution change with time for a powder ini- 
tially log-normal ( p  = 5, u = 0.2, i = j = 2), calculated (Eq. 9, m = 
3) to dissolue according to Model 3. Distributions are labeled in 
chronological order. Key: A, initial distribution; and D, distribu- 
tion a t  critical time. 

~ ? ( ” + l n ) l r n ,  which causes the p terms to cancel out. After rearrange- 
ment, Eq. 15 can be written: 

where: 

and: 

It is seen that the normalized dissolution profile (Eq. 19, m = 2 or 
m = 3) does not contain any rate terms ( k s  or kp  from Eq. 6 or 7) 
or any term ( p )  representing the sizes of the particles’. Scaling of 
time according to Eq. 18 has brought all dissolution curves origi- 
nating from distributions with the same “logarithmic shape” 
(which is completely defined by parameters u, i, and j) into one 
single curve (Eq. 19) which does not depend on the sizes of the 
particles or the rate parameter from the single-particle equation. 
This finding confirms Rules 1 and 3. 

The transformation has essentially normalized all possible sys- 
tems having the same intrinsic dissolution profile into one single 
curve. This curve is unique in that it makes it possible to evaluate 
the isolated distribution effect. This evaluation is best done by 
plotting in a way that linearizes the underlying single-particle dis- 
solution equation (Eqs. 6-8), by using (W/Wo)’lm instead of 
WIWo in the plot. Such a plot will be linear with slope = -1 for a 
true monodispersed system. Any deviation from this linearity and 
slope will be due solely to the distribution effect. 

Figure 3 shows such normalized dissolution profiles, calculated 
according to Eqs. 16 and 19, for powders initially log-normal, hav- 
ing distribution (shape) parameters u = 0.2 and i = j = 2, for parti- 
cles dissolving according to each of the three models2 (Eqs. 68) .  
The fraction of undissolved powder, W/Wo, is raised to the powers 
of 1/3, 1/2, and 2/3 for the reason just given. The distribution ef- 
fect is smallest for Model 3 and greatest for Model 1. Remarkably 
good linearity is observed for the first part of the dissolution pro- 
cess for all three models. This result does not mean, however, that  
the distribution effect is negligible in the beginning, as is seen from 
the fact that  the slopes differ considerably from -1. 

It is obvious that good linearity in such plots is no necessary 
guarantee that the powder is monodispersed or that there is no 
distribution effect. This error has been made frequently in investi- 
gations where the dissolution process is not followed to the end or 
very near the end. Furthermore, the validity of a particular disso- 
lution model cannot always be assessed solely from the linearity of 
a plot of data according to that model euen when the dissolution is 
followed to  the uery end. This fact is clearly demonstrated in Figs. 
4 and 5. 

Curve a in Fig. 4 shows a normalized dissolution profile of log- 
normal powders (u = 0.14, i = j = 2) calculated (Eq. 16) to dissolve 
and plotted (W/Wo to power of 2/3) according to Model 1. The size 
distribution effect is clearly reflected in the nonlinearity of the 
curve. By plotting the same data according to an incorrect model, 
Model 3 (W/Wo to power of 1/3), the size distribution effect is al- 
most entirely canceled and surprisingly good linearity is obtained 
that extends to the uery end of the dissolution process (curve b). 
Figure 5 shows the same phenomenon for powders (u = 0.12, i = j 
= 2) where the particles are calculated to dissolve according to 
Model 2 (Eq. 19, rn = 2). 

A judgment based solely on the linearity of such plots will often 

The normalized dissolution profile can also be obtained directly from 
Eq. 15 or 16 by choosing an arbitrary value for p and calculating WIW, for 
different K t  values, ranging from 0 to e3(r+jo)’“‘, corresponding to a set of J.  
values (Eq. 18). This technique was applied for Model 1 using Eq. 16. The 
computations were done for a wide range of p values and showed indepen- 
dence of this parameter, in agreement with theory. 

* A CDC Cyber 76 digital computer, equipped with calcomp plotter, was 
used for calculations and plots. Numerical evaluations were tested to six dig- 
i ts .  
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Figure 7-Size distribution change with time for Q powder ini- 
tially log-normal (p = 5, u = 0.2, i = j = 2), calculated (Eq. 9, m = 
2) to dissolve according to Model 2. Distributions are labeled in 
chronological order. Key: A, initial distribution; and D, distribu- 
tion a t  critical time. 

lead to false conclusions about the validity of the model, even 
where dissolution is followed to  completion, unless an analysis of 
particle size is made. The phenomena demonstrated in Figs. 4 and 
5 are not special cases for the particular values of u chosen but 
were observed to apply for a wide range of u values. 

These findings clearly emphasize the importance of particle-size 
analysis in investigations of dissolution kinetics. I t  is of interest to 
see how the particle-size distribution changes during dissolution. 
The distribution of a powder that is initially log-normal ( f i  = 5, u = 
0.2, 1 = j = 2) was calculated a t  various times according to Eq. 9 
and plotted in Figs. 6,7,  and 8, illustrating dissolution according to 
Models 3, 2, and 1, respectively. The distributions are labeled in 
chronological order from A to  H. Curves A and D represent the 
distributions initially and at  critical time, respectively. 

When particles dissolve according to Model 3 (Fig. 6), then the 
shape of the size distribution remains constant before critical time, 
consistent with isotropic dissolution (daldt = -K3). This is not 
the case for dissolution according to Models 1 and 2 where the ab- 
solute rate of change in size of the particles, daldt, increases with 
time. For Model 1: 

(Eq.22) 
K 
2 d a l d t  = - - I (a , ,?  - Kit)-"' 

and for Model 2: 

2 
3 da/dt = --K,(ai/L - Kf)-’’’ (Eq. 23) 

As a result, the distribution broadens before critical time (Figs. 7 
and 8) and is particularly affected at  the small particle end as zero 
is approached where daldt takes extreme values. Because of the 
latter effect, near the end of the dissolution process the relative 
frequency of the very small particles increases with increasing size 
for Models 1 and 2 (Figs. 8 and 7) while i t  decreases for Model 3 
(Fig. 6). This information should be of value for distinguishing 
Model 3 from the two others. However, from the distribution 
change alone, it is difficult to distinguish between Models 2 and 3. 

I t  appears from this discussion that it is not possible to distin- 
guish clearly between all three models from dissolution data or 
from particle-size measurements alone. I t  would be of interest to 
determine whether this could be done if both types of information 
are combined quantitatively. One convenient combination seems 
to have potential for discriminating between the models. It will be 
called the dispersion product, s, and is defined as: 

s = ( $ )  J x w W” (Eq. 24) 

where d and do are the mean particle diameters a t  times t and 0, 

18 

a 
a 60 120 180 

DIAMETER,  pm 

Figure 8-Size distribution change with time for a powder ini- 
tially log-normal (p = 5, u = 0.2, i = j = 2), calculated (Eq.  9, m = 
312) to dissolve,according to Model I. Distributions are labeled in 
chronological order. Key: A, initial distribution; and D, distribu- 
tion a t  critical time. 

respectively. The dispersion product is readily obtained, requiring 
only information for the fraction dissolved and simple averages 
from particle-size measurements. Time-consuming evaluations of 
distribution parameters are not required. I t  is a dimensionless 
variable that depends only on the initial distribution parameter, u 
(for fixed i and j ) ,  and the single-particle dissolution equation3. 
The variation of s during the dissolution period should for this rea- 
son reflect the basic equation. 

Figure 9 shows this variation for powders initially log-normally 
distributed ( u  = 0.2, i = j = 2). The curves representing the three 
dissolution models are significantly different. The basic shape of 
the curves remains.the same for varying values of u, although the 
minima shift to the right and to higher values for very narrow dis- 
tributions. All three curves approach s = 1 (stippled line) when u 
approaches zero as expected for a completely monodispersed pow- 
der. The values of the three minima remain approximately con- 

2 .o 
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0.4 ‘ 
Figure 9-Variation of the dispersion product ( E q .  24), with 
progress of dissolution of powders initially log-normal (u = 0.2, i 
= j = 2), calculated (Eqs. 13, 14, 16, and 19) to dissolve according 
to Models 1, 2, and 3. The stippled line represents Q monodis- 
persed powder (u = 0). 

The numerical evaluation of the dispersion product was made using sev- 
eral widely different arbitrarily chosen values for !.I and confirmed that this 
parameter cancels out in the calculations as expected. It is clear from previ- 
ous discussions that s does not depend on the value of the rate parameter 
(kl, kz, or k3 in Eqs. 6-8). 
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Figure 10- Variation of dispersion product minima, s,,,,", with 
the initial distribution parameter, u, for  dissolution according to 
Models 1,  2, and 3 (i = j = 2). 

stant when u ranges from somewhat less than 0.1 to a t  least 0.2 
(Fig. lo),  which should encompass most fine powder distributions 
encountered in practice. Theoretically, the considerable difference 
between the s,,, values should make it possible to distinguish 
clearly between the three models. 

The dispersion product profile (s uersus WIWo or percent dis- 
solved) has some powerful properties, since it is a dimensionless 
quantity dependent only on the shape of the distribution and the 
form of the single-particle dissolution equation. Any change in the 
coefficient of time kl, kl, or k2 (Eqs. 6-8) during the dissolution 
will have no effect on the s profile, because s is essentially para- 
metrically represented by the time, provided the change is the 
same for all particles irrespective of their size. Thus, if changes in 
such conditions as temperature, agitation, or vehicle composition 
during dissolution have identical influence on all particles, these 
changes will have no effect on the s profile. Alternatively, if the ex- 
ternal conditions are maintained constant, then s should indicate 
whether the coefficients are independent of particle size and, 
hence, whether such parameters as the interfacial concentration 
gradient, shape factor, and interfacial reaction rate are indepen- 
dent of particle size. The dispersion product should, therefore, be a 
valuable tool in dissolution kinetic studies. 

The extent to which these mathematical models can be applied 
to describe the dissolution of a "real" powder depends on three as- 
sumptions. 

1. As mentioned earlier, it was assumed that the particles dis- 
solve independently of each other. This should be approximated 
well under sink conditions. 

2. It was assumed that the dissolution of each particle in the 
powder can be described by an equation having the same parame- 
ter value (k) for all of the particles. In practice, this assumption is 
rarely valid because of differences in individual particle shapes, 
crystal structure, and interaction with the vehicle. However, these 
types of effects probably can be averaged to produce a parameter 
value for the single-particle dissolution model which, when used in 
the multiparticulate dissolution equation, results in a good ap- 
proximation of the actual multiparticulate dissolution behavior. 

3. It was assumed that the initial particle-size distribution can 
be approximated by a truncated log-normal distribution. Although 
it is generally accepted that most powders are approximately "log- 
normal," it is likely that the log-normal distribution function only 
provides a coarse approximation of the actual particle-size distri- 
bution, which usually contains a number of irregularities. 

This paper has dealt only with log-normal powders and three 
dissolution models. However, Eq. 3, together with Eq. 13 from the 
previous paper (9), makes it possible to calculate dissolution char- 
acteristics for a powder of any initial size distribution, or a sieve 
fraction of such a powder, considering any single-particle dissolu- 
tion equation of explicit form. 

SYMBOLS 
w = weight of dissolving particle a t  time t 
wo = initial weight of particle 
W = x w  = weight of undissolved powder at  time t 

WO = x w o  = initial weight of powder 
a = diameter of dissolving particle at time t 

a = mean particle diameter a t  time t 

t = time 

tion 

a0 = initial diameter of particle 

do = initial mean particle diameter 

N ( x , ~ , u )  = (l/uv'Z)e(r-@)2/2u' = normal distribution func- 

@ = mean of normal distribution 
u = standard deviation of normal distribution 

i. j = lower and upper truncation parameters for the 
initial size distribution that is log-normal and 
truncated a t  In a. = p - iu and In a,, = p + j u  

do = min ao (In do = w - iu) 
Do = max an (In Do = g + ju) 

F ( x )  = ~ ~ ( l / v ' 7 G ) e - x z / 2  dx = area under standard 

normal distribution function 

6-8) 
w = g(w0,t) = particle dissolution function (for example, Eqs. 

wg = g-' (w,t) = inverse particle dissolution function 
l(a) = particle-size density distribution at  time t 

lo (ao)  = initial particle-size density distribution 
Model 1 = w = ( ~ 1 0 ~ 1 ~  - klt)3/2 
Model 2 = w = (wo1/2 - k2t)2 
Model 3 = w = (wo1j3 - k3t)3 

$ = time fraction = fraction of time necessary for 

m = 3/2,2, and 3 for Models 1,2,  and 3, respectively 
k,  = parameter in model, i = 1-3 
K ,  = (6/p7r)11"'k, 

complete dissolution 

s = (Q/Qo)"  X WoIW, dispersion product (r) = m!/[n! ( m  - n)!], binomial coefficient 

P = operator that is equal to 1 in the time period be- 
fore the operand becomes equal to zero and is 
equal to zero after that time 

REFERENCES 

(1) W. I. Higuchi and E. N. Hiestand, J.  Pharm. Sci., 52, 

(2) P. J. Niebergall, G.  Milosovich, and J. E. Goyan, ibid., 52, 

(3) A. W. Hixson and J. H. Crowell, Ind. Eng. Chem., 23, 

(4) J. E. Goyan, J .  Pharrn. Sci., 54,645(1965). 
(5) "Symposium on Particle Size Measurement," American So- 

ciety for Testing Materials Special Technical Publication No. 234, 
Philadelphia, Pa., 1958. 

(6) J. T.  Carstensen and M. N. Musa, J.  Pharm. Sci., 61, 
223( 1972). 

(7) D. Brooke, ibid., 62,795(1973). 
(8) Ibid., 63,344(1974). 
(9) P. V. Pedersen and K. F. Brown, J .  Pharm. Sci., 64, 

67( 1963). 

236( 1963). 

923(193 1). 

1192(1975). 

ACKNOWLEDGMENTS AND ADDRESSES 

Received October 25, 1974, from the Department of Pharmacy, 

Accepted for publication April 2, 1975. 
Supported in part by Grant 72/9184 from the National Health 

and Medical Research Council of Australia. 

University of Sydney, Sydney, N.S. W.  2006, Australia. 

T o  whom inquiries should be directed 

1986 I Journal of Pharmaceutical Sciences 


